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The bearing capacities and settlements of rigid-surface, spherical and

conical foundation elements on sand of medium density were observed experi-

mentally in static tests. Results were compared with those established by

this investigation for circular plates loaded under the same conditions on

the same type of sand. Equations for determining the bearing capacity of

a cone and sphere were developed by theory and were supported by the experi-

mental results.

The bearing capacity and settlement, as a function of the thickness

of soil layer, were investigated to establish depth of soil beyond which

values of either stay constant.

This investigation led to the conclusion that the bearing capacity of

foundation elements with circular projected areas is a function of the

cross-sectional diameter in the plane of the ground surface and varied

directly with respect to this diameter.

As an example of this point, it was observed that the bearing capacity

of two spheres of differing spherical diameters was the same if the cross-

sectional areas at the plane of the ground surface were the same.
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SYMBOLS AND NOTATIONS

A Area, ft2 or in. 2

B Diameter or width of the footing, ft or in.

Be Cross-sectional diameter of cone

Diameter of plate whose surface area equals the surface contact area

of a cone

c Unit cohesion of the soil, ib/ft _

ca Adhesion force, ib/ft 2

D Spherical diameter, ft or in.

Dz The vertical distance between the surface of the ground and the base

of the footing, ft

E Young's modulus of the solid, Ib/in. 2

I Influence value of shape pertaining to settlement
P

_a Coefficient of subgrade reaction, tons/it 3

o
_B Coefficient of subgrade reaction for a circular plate, tons/it 3

_81 Coefficient of subgrade reaction for a l-it square plate, tons/it _

_81 Coefficient of subgrade reaction for a l-it diameter plate, tons/it 3

N= Dimensionless bearing capacity coefficient

N¥ Dimensionless bearing capacity coefficient

N¢ Dimensionless bearing capacity coefficient

p Pressure per unit of surface area, Ib/ft e or Ib/in. 2

pp Passive earth pressure without adhesion component

q Load per unit of area, Ib/ft 2 or ib/in. _

q= Net foundation pressure, ib/ft 2 or Ib/in. 2

ix



qo

r

W

Y

Y

o

Ol

oa

T

Ultimate bearing capacity, Ib/ft e or ib/in. 2

Ultimate bearing capacity for local shear failures, Ib/ft 2 or ib/in. 2

Radius of footing or one-half of the width, ft or in.

Total weight of soil mass, or weight per unit of length, Ib or Ib/ft

Settlement, ft or in,

Half the vertex angle of a cone, degrees

Unit weight of soil, Ib/ft _

Unit axial strain, in./in.

Poisson's ratio

Normal stress, ib/ft s or ib/in, s

Major principal stress, Ib/ft 2 or Ib/in. s

Minor principal stress, ib/ft s or Ib/in. s

Shearing stress, Ib/ft 2 or Ib/in. 2

Angle of internal friction, degrees

Angle of rise of lower boundary of central zone under a loaded

strip footing, degrees

x
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CHAPTER ONE

INTRODUCTION

I.I General

An important and major part of soil mechanics deals with foundations;

their shapes, sizes, position with respect to ground surface, bearing capa-

city of the soil and settlement.

Proper design of foundations is most essential, and should be studied

thoroughly to assure the safety and soundness of the superstructures to be

supported on the foundations. Two main requirements must be satisfied;

namely, failure of the foundation by plunging must be avoided, and settle-

ment must be maintained within the limits imposed by the superstructure

that is supported.

In this investigation, the theories and techniques of soil mechanics

are employed in a study related to the landing of spacecraft on soil. In

particular, a study is made of the behavior under static loading of various

shapes of landing heads.

Such a study requires the use of models, since in general the proto-

type is too large to be handled in the laboratory. Models of various scale

ratios were used in order to develop expressions for behavior which can be

employed to predict the behavior of prototypes under static loading.

1.2 Obiectives of Investigation

The main objective is the load-settlement study of statically loaded

foundation elements to develop expressions for predicting the load-settle-

ment relationships for circular plates, spheres, and 60 degree cones.
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In this investigation, models of the shapes of possible landing heads

of spacecraft were studied both theoretically and experimentally, with the

objective in mind of developing non-dimensional expressions for predicting

the load-settlement behavior.

Since experimental studies in this investigation involved the use of

models, another study of importance which was undertaken concerned the

depth or thickness of the foundation soil. Knowledgewas desired concern-

ing the depth at which there was no appreciable influence from the boundaries

of the container. A thorough study wasdone through load tests using a

2.22-in. diameter plate as a foundation element.

1.3 Scope of Investigation

Though a landing spacecraft probably would cause dynamic loading as the

result of impact, the scope of this investigation is limited to static load-

ing tests on three types of foundation elements; namely, plates, spheres,

and cones. Moreover, the foundation elements tested and the respective

soil beds were limited by the means of handling and performing such tests

within the soil mechanics laboratories. The soil beds were eight times the

diameter of the plate in depth, width and length, thus placing a limitation

on the elements to be tested as the soil beds became too heavy to be handled

in the laboratory.

1.4 Foundation Elements Selected

The foundation elements selected were circular, conical, and spherical

in shape. (See Fig. i.) The circular plates formed the basis for estab-

lishing the theory and the experimental procedures; and the observed data

from plates were compared with that from spheres and cones for the same
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conditions of foundation soil.

The plates were of three sizes: 2.22 in., 3.14 in., and 4.44 in. in

di_eter, with surface areas in contact with the soil of ratios of i to 2

to 4 respectively. All three plates were machined from aluminum blocks

having I/2-in. thickness. The deflections of the plates within the range of

applied loads are negligible and therefore the plates may be considered as

rigid footings.

The spheres chosen were of two sizes; 3.14 in. and 5 in. in spherical

diameter. At various embedments within the soil, the spheres furnish cross-

sectional areas, as well as surface contact areas, equivalent to those of

the plates. Therefore, the two spheres formed a basis for comparative study

with the circular plates, and also permitted a study of the effect of the

spherical diameter on the load-settlement relationship.

The conical element chosen was a right circular cone with the half

angle at the vertex equal to 30 degrees with the vertical. One cone, 6 in.

high, was used. The cone and spheres were solid aluminum castings and were

similarly considered to be rigid footings.

1.5 Foundation Medium Used

The foundation medium used was clean, dry sand that was kept at room

conditions. It was brought from the Colorado River basin in Austin, Texas.

The sand was sifted on a "Rotex" sifter, style No. 12, with a pulley speed

of 520 to 560 rpm. The sifter had two U. S. Standard sieves, No. 30 and No.

200. The output, passing sieve No. 30 but retained on sieve No. 200, was

collected for use in this investigation. A sieve analysis to determine

the grain size distribution is given in Chap. IV, Art. 4.1.



Examinedunder a magnifying lens, the sand grains were found to be of

rather smooth, round shapes. Moreover, the sand was found to be quite rich

in silica.



CHAPTERTWO

THEORETICALCONSIDERATIONS

2.1 Introduction

The load-settlement relationships for the three types of foundation

elements were studied both theoretically and experimentally.

Figure 2 shows a typical load-settlement curve for a plate that was

loaded at a shallow depth, i.e., the depth of the soil to the bottom of the

plate did not exceed twice the diameter or width of the plate.

As seen from Fig. 2, the ultimate load that the ground can sustain

is clearly indicated by the fairly abrupt passing of the curve into a

vertical tangent, at which stage the failure of the earth support may be

22
identified. This type of failure is called general shear failure. (Refer

to Fig. 3.)

On the other hand, if the load-settlement curve does not exhibit a peak

load as for the shallow foundation (Fig. 2) but continues to descend on a slope,

as shown by the curve of Fig. 3; then the failure of the earth support is

arbitrarily specified, in accordance with accepted conceptions, as soon as

the curve passes into a steep and fairly straight tangent. Such a type of

22
failure is called local shear failure.

The load which causes the failure of the earth support is called the

total or ultimate bearing capacity, and when used per unit of bearing area,

it is called the bearing capacity of the soil.

Therefore, the load-settlement relationship involves the knowledge of

the bearing capacity of the soil and the settlement of the foundation element.
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Referring to the typical load-settlement curve, Fig. 2, the early part of

the curve is almost a straight line extending to about one-half the value

of the ultimate load. Then it deviates through a curved section to pass on

to the vertical tangent. The slope of the straight line section is called

21
the modulus of subgrade reaction.

In this chapter, the theoretical considerations involved in the follow-

ing load-settlement relationships are briefly discussed:

A. Bearing capacity

B. Settlement analysis

C. Theory of subgrade reaction.

2 o2

factors:

The Bearing Capacity of Foundations

A. Introduction

The bearing capacity of foundations is influenced by the following

8

(I) Mechanical properties of the soil:

(a) Density

(b) Shearing strength

(c) Deformation characteristics

(d) Size and shape of grains

(2) Physical definitions of loaded area:

(a) Size

(b) Shape

(c) Roughness of base

(d) Depth below ground surface

(3) The initial stresses in the soil

(4) Water conditions in the ground.
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These factors clearly indicate that the rather widespread idea that the

bearing capacity dependsmainly on the characteristics of the soil in question

is incorrect. _nile the main difficulty in bearing capacity problems is that

of evaluating soil properties, there are manyother factors to be considered.

Therefore, it is erroneous to use the bearing capacity tables of somebuild-

ing codes that only list the type of soil with no allowance or modification

for certain designated conditions.

B. Theory of Bearing Capacity for Shallow Footings

A numberof theories have been presented which furnish expressions

for the ultimate bearing capacity. It is worth noting the theory of Prandtl,

which was originally set up for metals.

Figure 4 shows a cross-section illustrating Prandtl's plastic equili-

brium theory 16 for long, loaded areas of width B on the surface of the

soil. The figure shows the three zones which exist after failure is reached.

Zone I movesdownwardwith the footing, pushing Zone II into a radial motion.

Zone III, in turn, is pushed up and out. On the basis of these assumptions

Prandtl developed an expression for ultimate bearing capacity qo , dependent
28

principally on the angle of internal friction @ as defined in Mohr-Coulomb.

Since soils have the characteristic of compressibility, no close agreement

was reached between soils and Prandtl's hypothesis. However, the general

concepts of the mechanics of failure as given by this theory are reasonably

correct.

Terzaghi23, 25 in 1943 presented a more general solution for the ulti-

mate bearing capacity of long footings. Figure 5 shows the failure zones and

surfaces assumedby this theory.

Terzaghi's method contains various assumptions which are discussed in
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Chap. V in comparing results from theory to the data from experiments.

However, all the assumptions used by this theory are quite reasonable, and

results from this approach should be quite accurate for most cases.

For the benefit of the reader, the general equations for bearing

capacity from Terzaghi's theory are presented here. Some aspects of these

equations are discussed in detail in Chap. V.

Terzaghil7, 23 showed that for general shear failure the ultimate

bearing capacity of long footings at, or below, the surface of any soil is

given by

_o = c(N=) + yB(O.5N¥) + yDz(Nq) (i)

where the dimensionless N coefficients N= , Ny , and Nq are bearing

capacity factors that depend only on the value of the angle of internal

friction # , and where

Dz = the vertical distance between the surface of the ground and

the base of the footing

y = unit weight of the soil

c = cohesion per unit of area

B = width of the footing.

Figure 6 shows the relationships between the bearing capacity coefficients

and the angle of internal friction. 17' 23

The above expression represents the two-dimensional case. From an

analysis of experimental data Terzaghi obtained the following expressions

for the ultimate bearing capacity for round, shallow footings, 18'
26

qo = 1.3c(N=) + 0.3yB(Ny) + ?Dz(Nq). (2)
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An expression for the ultimate bearing capacity of purely cohesive soils

may be determined by setting the friction angle equal to zero. Similarly,

an expression for cohesionless soils may be determined by setting the cohesion

c equal to zero. Therefore, the expressions for the ultimate bearing capa-

city for circular footings placed on the surface of the soil (D_ = 0), are

given according to Terzaghi's theory by

q0 = 1.3c(N=) for purely cohesive soils (3)

and

_o = 0.3yB(N¥) for purely cohesionless soils. (4)

It may be noted here that the ultimate bearing capacity for purely

cohesive soils is entirely related to the cohesion c and the coefficient

N¢ which is a constant. Therefore, the value of qo as expressed in Eq. 3

is constant for a given cohesive soil regardless of the size and shape of

footing.

On the other hand, the ultimate bearing capacity for cohesionless

soils is related to the diameter B as well as the coefficient N¥ which

is a function of _ . Therefore, the value of qo as expressed in Eq. 4

for a given cohesionless soil is not constant but is directly proportional

to the diameter B .

In this investigation, (refer to Chap. V), a theoretical approach

similar to that above was used to develop bearing capacity expressions for

the conical and spherical foundation elements on cohesionless soils.

Many other theories on bearing capacity 5' 8, 13, 15 have been presented
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in the literature. These theories offer only slight modifications to the

theories of Prandtl and Terzaghi. Therefore, only these two theories are

discussed and Terzaghi's theory is employed later as the basis for compar-

ison with the experimentally observed data.

2.3 Settlement Analysis of Surface Footings

For rigid footings resting on the surface of the soils where no tilt-

ing is allowed, the settlement must be uniform. The generally accepted

pressure distribution under such footings is shown in Fig. 7 for both types

20
of soils, cohesionless and cohesive.

In sand, under uniform settlement, the high resistance to compression

in the soil below the center of the footing, as compared to the lack of

resistance to compression below the edges, must result in a relatively

large pressure under the center and no pressure at the edges, as shown in

Fig. 7(a). The shearing strain, developed below the edges of the footing

due to difference in soil subsidence, is caused by a vertical force from

the footing. In sands, owing to the lack of rigidity, little or no force

is required to develop shearing strains at the edges of a surface footing;

whereas in cohesive soils a large force is required. This explains the

larger edge pressure distribution for clay as shown in Fig. 7 (b).

In estimating the settlement of a foundation on a clay soil, it is

important to realize that the total movement is composed of two main

portions, the immediate settlement and the consolidation settlement.

The immediate settlement is considered to be due to deformation of

the soil without volume change, by lateral yielding, and thus is taken as

the elastic settlement. It is considered to be the more important component
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for loads which are small in relation to the ultimate bearing capacity.

However, Meyerhof_ stated that the immediate settlement appears to contain

two fairly distinct components, resulting from elastic and plastic deforma-

tions, with settlements due to plastic deformations forming up to one-

quarter of the total movement.

24
From the theory of elasticity, the immediate settlement of a loaded

area on the surface of a semi-infinite solid is given by the expression

i__ _

Y = qnB E Ip (5)

where

qn = net foundation pressure

B = breadth or diameter of the loaded area

= Poisson's ratio

E = Young's modulus of the soil

I = influence value depending on the shape and rigidity of the loaded
P

area.

For saturated clays there is no volume change if there is no dissipa-

tion of pore pressure. Therefore, Poisson's ratio may be used as 0.5 in the

calculations of settlements. The value of E is taken from the stress-strain

curve obtained in the undrained triaxial test.

15
As shown by Skempton, Eq. 5 can be re-arranged, for convenience, in

the form

__7_ = __ .__ _ (6)
B qO c p E/c
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where

qo = ultimate bearing capacity

c = apparent cohesion of the clay.

The ultimate bearing capacity of clays (for the condition of _ = 0) as

previously discussed is expressed by

go = c(N=) + yD_ (N0).

17, 23
Note that the middle term in Terzaghi's general expression

dropped out due to the value of N_ = 0 for @ = 0. Since for surface

footings

(7)

Df is zero, the expression is reduced to the general form of

go = cN= (8)

or

Nc = _ • (9)
c

The value of Ip as shown by Timoshenko 27 and others 12, 15

footings at the surface is

for circular

= m

Ip 4 '

then for a rigid circular plate at the surface, by substitution in Eq. 6

_X_= -_ N= 4 i- (0.5) e
B go E/c (i0)

Now, by definition from the undrained triaxial compression test, the

relation between stress and strain is
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E
(II)

where

¢ = axial strain

aI - as = deviator stress

E = Young's modulus using the secant at the stress condition

equal to _a I - as)

Equation ii may be written in the form

e = _al - as)f c E/c '

(12)

where the f denotes failure condition. For undrained testing, the failure

condition for saturated clays is represented by

_a I - as) t = 2c (13)

or

al " as)_ = 2.

c
(14)

Substituting in Eq. 12

al - as) 2 (15)

c= (al, as)_ Elc
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Assuming similarity between stress-strain curves from triaxial tests and

load-settlement curves from bearing capacity studies as shown in Fig. 8,

the following relation may be stated.

_n = (al"°'a)

qo <al _ cFa) ' (16)

Solving Eqs. i0, 15 and 16 simultaneously, Eq. 17 is obtained.

¢ _Z_ i I

T = B Nc _/4 LFI " (0"5)2 7J (17)

Therefore,

--_= 0.2945 N= ¢ (18)
B

or

y = 0.2945 B Na¢ (19)

Equation 19 has been derived here for circular plates; equations for

plates of different shapes can be derived similarly by using the proper

influence factor Ip.

Therefore, as discussed by Lee, 6 this approach leads to a general

procedure for predicting plate settlements from unconfined compression tests

of a saturated clay. Referring to Fig. 8, the steps for predicting plate

settlements are as follows.

I. From the compression test, pl0t the stress-strain relationship.
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2. For any value of stress a , obtain the corresponding strain ¢ .

3. Using Eq. 19 and substituting the value of Nc , determine the

settlement y for the value of ¢ , corresponding to the applied

stress, and plot results.

the theories of Terzaghi,

The value of N¢ may be obtained from

23 15 8
Skempton, or Meyerhoff.

Equation 19 cannot be expected to yield accurate results in the high

range of _ since at loads near the ultimate bearing capacity a consid-
qo

erable zone of the clay beneath the footing is subjected to strains greater

than those at the ultimate stress in the compression test.

It is of interest to note that Skempton 15 has shown the greater part

of the settlement is due to strains in the clay within a depth of not more

than four times the diameter below the base of the footing. At the greater

depths, the shear stresses are less than about 5 per cent of the net founda-

tion pressure qn-

As noted in the above discussion, the theory as expressed in Eq. 19

was developed for a saturated clay. No comparable theory exists for a cohe-

sionless soil; however, as discussed later some aspects of the settlement

of a plate on cohesionless soil were considered in this investigation.

2.4 The Theory of Sub_rade Reaction

Referring to Fig. 2 which shows the typical load-settlement curve for

a shallow plate, the slope of the straight-line portion of the curve is the

subject of the theory of subgrade reaction.

The theory of subgrade reaction as presented by Terzaghi 21 is a simpli-

fied method for the solution of settlement problems.
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The subgrade reaction is the pressure p per unit of area of the sur-

face of contact between a loaded beamor slab and the subgrade.

The coefficient of subgrade reaction ks is the ratio between this

pressure p at any given point of the surface of contact and the settle-

ment y produced by the application of the load at that point. Therefore,

_, = _2__ . (20)
Y

The value _, depends on the elastic properties of the subgrade and

on the dimensions of the loaded area.

Terzaghi's theory 21 of subgrade reaction is based on the following

simplifying assumptions:

The ratio _, = _2__ is independent of the pressure p, and
Y

k s has the same value for every point of the surface acted upon

Io

2.

by the contact pressure.

In connection with a rigid foundation the relation k s = _2__ leads
Y

to the fact that the distribution of the subgrade reaction p over the

base of the foundation must be planar since a rigid foundation remains plane

when it settles. Hence, we can assume that the subgrade reaction has a

planar distribution; this is contrary to the reality. (Refer to Fig. 7.)

In spite of the discrepancy between theory and reality, the theory of

subgrade reaction can be used safely in the design of footings. The errors

are within the margin of safety, and moreover the results are conservative.

The numerical values of the coefficient of subgrade reaction can either

be estimated on the basis of published data from tests or else can be derived

from field tests.
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The coefficient of subgrade reaction _sl for a square plate with a

width of one ft has been selected as a basis from which values for other

21
shapes and sizes may be computed. The following table, as given by Terzaghi,

gives values for _sl in tons per cuft for square plates 1 ft x i ft resting

on sand. Terzaghi also gives values for _sl for clay; however, the experi-

mental portion of this investigation deals only with sand; therefore, only

values for sand are presented here.

TABLE I.

Values of _s I in Tons/ft _

Relative Density of Sand,

Dry or moist sand, limiting values

Dry or moist sand, proposed value

Loose

20 - 60

40

Medium

60 - 300

130

Dense

300 - I000

50O

The coefficient _s for a rectangular plate of width

21
tained from the relation

B may be ob-

B + I >2 (21)7_, = _5 1 2B '

where B is feet.

Moreover, the adjusted values for shape and size may be obtained from

21
the following relations:

2 _s for continuous footings (22)
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and

_B

= I for a square footing of width B. (23)_' 8 B

The use of the theory of subgrade reaction has limitations due to the

simplifying assumptions upon which it is based. Referring to Fig. 2, the

line OA represents the first assumption in the theory of the subgrade

reaction; whereas, the curve OC would be the true relationship if loading

tests were performed. As seen, therefore, the assumption is valid at best

only up to values of p equal to about one-half the ultimate bearing capa-

city. Moreover, the second assumption states that the subgrade reaction

p has the same value under all the contact area of the footing. In reality,

the pressure at the rim of the surface of contact is different than at the

center as shown in Fig. 7.

A comparison between the values of coefficient of subgrade reaction as

determined in this investigation and as given by Terzaghi is shown later.
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CHAPTERTHREE

TESTINGEQUIPMENT

3.1 The Soil Beds

The soil beds were placed in boxes made out of 3/4-in. plywood. Exist-

ing soil mechanics literature indicates that foundation beds must have a

depth and width not less than four to six times the diameter or width of

the footing in order that the boundaries of the container do not affect

the results of load bearing tests. 14' 15 For this investigation the factor

of eight times the diameter was chosen to insure accuracy of the results.

The same depth dimension was also used for the length and width; therefore,

the foundation beds used during this investigation had the following sizes:

18 in. x 18 in. x 19 in. for the 2.22-in. diameter plate

25 in. x 25 in. x 26 in. for the 3.14-in. diameter plate

36 in. x 36 in. x 37 in. for the 4.44-in. diameter plate

The largest box was used during testing of the cone and the two spheres.

The box depth was made i in. deeper than required to allow for the larger

initial volume of sand in its loose condition, prior to its vibration.

3.2 Loading Machine

The loading was applied by the use of an unconfined compression testing

machine (Soil Test U-160-A) which was manufactured to be manually operated.

The machine was converted to motor-operated, with a gear to control the rate

of loading. As shown in Fig. 9, the machine, with its top cross bar removed,

was mounted upside down on a rigid steel frame. A double proving ring attach-

ment (Soil Test No. 2124) was fitted on the loading piston so that the applied
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load could be accurately measured to a value of about 0.3 lb.

The piston on the loading machine had a 4-in. stroke, which was suffi-

cient to produce ample settlement in all the foundation elements employed

in the tests. The settlement measurements were made with an extensometer, with

two inches of travel, which was rigidly attached to the bod_ of the loading

machine (see Fig. 9).

The loading piston was fitted with a threaded brass head to which the

various foundation elements were attached.

3.3 Load Cells

As a control on the density of the soil to be tested, the weight of

the prepared foundation boxes had to be measured; and since the weight

exceeded the capacity of the existing platform scales in the soil mechanics

laboratories, load cells were used, Two manually-operated hoists were mounted

on the steel frame to lift the boxes so that they could be weighed by either

of two Baldwin SR-4 load cells, having capacities of 600 Ib and 6000 lb.

Weights were read from a Baldwin SR-4 calibration indicator.

3,4 Vibrator

As the foundation soil had to be in a dense state, a concrete hand

vibrator with a flexible shaft was used for densifying the sand. The vibrator

was manufactured by the Viber Manufacturing Company, and has a power capacity

of 345 watts while in concrete.
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CHAPTERFOUR

TESTS- PROCEDURESANDDESCRIPTION

4.1 Sieve Analysis and Classification of the Sand

A sieve analysis using standard procedures was made to determine the

grain size distribution, and the resulting curve is shown in Fig. i0.

As seen from the grain size accumulative curve in Fig. I0, the sand

tested may be classified as a uniform _ne sand. Only 7 per cent of the

sand passed the No. 80 sieve.

4.2 Density Control Test

One of the critical factors that influence the results of load-settle-

ment tests is the density of the foundation soil. To assure uniformity in

the testing conditions of the foundation soil, proper density control or

checks must be maintained for every test.

The sand, being a cohesionless material, is densified best through

vibration, and as described in Art. 3.4 a concrete vibrator was used to

attain the desired density.

The foundation boxes were calibrated along the depth with marks at

6-in. spacings. The sand was then placed in layers of approximately 6 in.

and each layer was vibrated for the specific period of time tabulated in

Table 2.
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TABLE 2.

VIBRATOR TIME AND POSITIONS

33

Size of Box

in.

18 x 18 x 19

25 x 25 x 26

Vibrator

position

Vibrating Time

per Position

sec.

4 corners 15

Total time

per Layer

min.

4 corners 30 2

36 x 36 x 37 4 corners 30 4

4 sides 30

The new height of sand, after vibration, was measured, and the volume

was determined. Using the load cell, the sand was weighed and the density

was computed. The operation was repeated layer after layer until the box

was filled to the required height.

To be sure that the density of the soil did not vary appreciably

between the various layers, another type of test was run. One layer after

another was scraped from an already full and vibrated box. Then each layer

removed was measured for volume and weighed for density computations.

The observed results showed that the density of the sand was controlled

within a maximum variation of 4 per cent. Such a variation is thought to be

within the accepted precision required for load-settlement tests.

It is of interest to note that the vibration time varied almost directly

with respect to the volume of the sand to be densified. The 6-in. layer in

the 18-in. x 18-in. box, which measured 1.12 cuft, was vibrated for one

minute to achieve the desired density; while a 6-in. layer in the 36-in° x
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36-in. box, which measured 4.50 cuft, was vibrated for four minutes to

achieve the same desired density. The ratio of the volume increase was

approximately four times, which agreed with the time ratio of four. Simi-

larly, a 6-in. layer in the 25-in. x 25-in. box, which measured 2.17 cuft,

required two minutes of vibration time to attain the same desired density.

4.3 Determination of the Angle of Internal Friction of the Sand

Vacuum-triaxial tests were run on samples taken from the same sand used

in this investigation. The samples were 1.4 in. in diameter and 3.2 in. in

height. They were prepared by vibration on a small vibrating platform to

attain various densities ranging from the loosest density of 95 ib/ft s to

the maximum density of 108 ib/ft 3 that was attainable with this sand.

The test speeds were around 0.07 in. per minute under a vacuum up to

I0 ib/in. _ .

The curve which shows the relation between density and the angle of

internal friction of the sand is given in Fig. ii. The density of the sand

during the load-settlement tests ranged from 99 to 103 ib/ft 3.

The angle of internal friction as determined is approximately 38.7

degrees, for the average density of i011b/ft 3 assumed to apply for all the

load-settlement tests. (Refer to Fig, II.) The probable error in the value

of the density was computed for all the load-settlement tests and was found

to be 0.8 Ib/ft 3.

This section is summarized from the unpublished research investigation

of Osman Io Ghazzaly, another phase of the entire project mentioned in the

preface.
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4.4 Load-Settlement Tests_ Standard Procedure for all the Footing Elements

After the soil box was filled with sand in layers, the surface of the

top layer was levelled and the layer was vibrated. Since the initial position

of the footing element with respect to the soil bed is important, great care

was taken to have the surface of the soil bed as level as possible prior to

vibration. All attempts to level the soil after vibration disturbed the sur-

face and threw off the results completely. The footing element was brought

to a "just touching" position with the surface of the sand, making certain

that no load was applied.

The speed of the motor controlling the rate of loading was then ad-

justed to a constant rate of settlement of approximately 0.07 in. per minute,

and after setting both the load and settlement dials to zero, the testing

was started. The rate of loading of 0.07 in. per minute was selected because

it was slow enough to produce no dynamic effects. While little information

is available on the response of footings on sand as a function of the rate

of loading, information is available with regard to triaxial testing. The

accepted standard loading rate in triaxial compression tests on cohesionless

soils for static loading effects is that causing a strain of from 1/4 to 2

2
per cent per minute. Assuming that a cylinder of soil of about 2 diameters

in depth below the foundation element represents the loaded specimen, then

the adopted rate of 0.07 in. per minute falls within the accepted standard

specification. Triaxial compression tests on one type of cohesionless soil

showed only a I0 per cent increase in strength when the duration of time from

the start of loading to the time of maximum compressive stress was decreased

2
from I000 seconds to 0.01 seconds. No difference in results were observed

for rates of loading between 1/4 and 2 per cent per minute. Thus, the results
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of this test program can be said to be the "static" load conditions, unaf-

fected by the rate of loading.

The load was continued beyond failure, as indicated by a constant load

value with an increase in settlement. The test was stopped before any soil

started to come over the footing element which would have caused overburden

effects.

When the testing was over, the surface of the sand was struck level in

order to measure the volume of the sand. The box was then weighed to allow

the calculation of the density of the sand.

When all needed data for one test were taken, the soil box was com-

pletely emptied, and a new test was started.
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CHAPTERFIVE

RESULTSANDDISCUSSION

5.1 Effect of Depth of Soil Bed

The load-settlement tests performed to study the effect of the depth

of the soil bed on the ultimate bearing capacity, the settlement at the

ultimate bearing capacity, and the coefficient of subgrade reaction, were

run in the 18-in. x 18-in. x 19-in. box using the 2.22-in. diameter circular

plate as the foundation element.

The procedure used was the same as that described in Art. 5.4, which

was standard for all load-settlement tests. The observed data are plotted

in Figs. 12, 13, and 14. After studying the plotted data for the ultimate

bearing capacity (Fig. 12), it was felt that the sand might be slipping on

the bottom of the box during the loadings for depths of from two to four

diameters, causing a reduction in the bearing capacity• To remove the

possibility of doubt, a number of tests were performed using a roughened

base for the box. The base was roughened by gluing sand grains to it. The

observed results were the same as those from the previous standard tests.

The fact that there was no increase in load for the tests using the roughened

base may be explained by referring to the theoretical approach 25 in Appendix

A, and noting that the deepest surface at the state of failure was within

the soil even for a depth of two dimneters. Therefore, the discontinuity

in the curve in Fig. 12 in the vicinity of a depth of four diameters remains

unexplained.

From an analysis of Fig. 12, which shows the effects of the soil depth
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on the ultimate bearing capacity, it may be stated that for load-settl_ent

tests to be free from any effects of the bottom l_ers, the thickness of the

soil bed tested must be at least ei_t times the diameter of the plate used

as _e foundation el_ent.

The same anomaly seen in Fig. 12 may also be seen in Figs. 13 and 14.

may be noted from an examination of the plotted points in Figs. 12 and

13, the unusual results were not due to experimental error since multiple

tests yielded virtually the s_e values.

Figure 15 shows the percentage error that may result for depths other

than the noted depth of ei_t times the diameter of the plate. The

expression used in computing the percentage error is

6_-Wo)
E - x i00

Vs

where

Vs = value at depth of eight diameters and below

Vo = observed value.

Further study of Figs. 12 and 13 shows similarity in behavior in the

neighborhood of i to 2 diameters in depth to the depths of 8 diameters and

more. The error in the value of the ultimate bearing capacity, as shown in

Fig. 15, is about +8.5 per cent. Such a value may be of interest where deep

soil beds are not possible. Moreover, a 2-diameter soil depth is relatively

easy to prepare and handle in the laboratory.

It is to be noted here that the soil bed may not behave the same under

dynamic load. Moreover, other soils, even under static load, may behave

in a different manner than did the sand used by this investigation. There-
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fore, additional research is recommended on the minimum depth of soil bed

which can be used with accuracy for various types of soils and loads.

5.2 Load-Settlement Curves for the Plates

A. Experimental Results.

Load-settlement tests on the three plates (the 2.22 in., the 3.14

in., and the 4.44 in. in diameter) were run in the respective soil boxes

as previously discussed, and the observed data were plotted. Thus every

plate had a set of load-settlement curves from which an average load-settle-

ment curve was obtained. The average curves were used for the analysis of

the results. A typical load-settlement curve for the 2.22-in. diameter

plate is shown in Fig. 16. Average load-settlement curves for all the plates

are shown in Figs. 17 to 19. The average load-settlement curves were ob-

tained by averaging graphically the results of the individual tests. Eleven

tests were performed using the 2.22-in. diameter plate, 5 tests using the

3.14-in. diameter plate, and 7 tests using the 4.44-in. diameter plate.

It is to be noted that the type of soil failure for all the plates was

that of the general shear failure, which conforms with the established be-

havior of shallow footings as discussed in Art. 2.1.

Values of ultimate bearing capacities, the corresponding settlements

and the coefficients of subgrade reaction were read from the idealized curves

and are tabulated in Tables 3 and 4. The last column in Table 4 will be

discussed later.

B. Discussion of Bearing Capacity.

The theory of the bearing capacity of foundations, (refer to Art.

2.2 B), as established by Terzaghi in 194322, 23 and which is still widely

used, has been thoroughly investigated in this study. Figure 20 shows a
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freebody diagram of the assumed failure surface, much of which is a log

spiral, under a loaded strip footing on the surface of the soil. The assump-

tion_ made by Terzaghi and which affect the theoretical value of the ultimate

bearing capacity are hereby discussed.

The central zone beneath the footing is a wedge in elastic equilibrium.

The soil located within this wedge-shaped body remains practically unchanged

in shape as it moves vertically downward with the footing. The lower bound-

ary of this central zone is assumed to rise at an angle to the horizontal

equal to @ for a footing with a rough base and at an angle equal to

45 + @/2 for a footing with a smooth base. Therefore, according to Terzaghi 22'23

this angle may have any value intermediate between @ and 45 + @/2. Such a

wide possibility in the value of the rise angle of the central wedge gives

various and different failure surfaces that affect the bearing capacity.

The effect of the variation in the angle of rise and other factors

mentioned below are studied through the example calculations, shown in

Appendix A. These calculations show the evaluation of the bearing capacity

coefficient N¥ , which is the only coefficient related to the investiga-

tion. (Refer to Eq. 4.)

Figure 7(a) shows the generally accepted pressure distribution under

a rigid footing loaded on the surface of cohesionless soils. While the

pressure distribution shown may be approximated fairly well with a triangle,

at high loads the pressure distribution tends to increase at the center and

the triangle is even a better approximation. Such a pressure distribution

was used by Terzaghi in the theory under discussion. However, pressure

distribution under a footing on sand has not been thoroughly studied by

experiment and there is the possibility that other shapes of pressure dis-
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tribution exist under the base of the footing. Therefore, it was decided to

study the values of the bearing capacity coefficient Ny for three types

of pressure distribution:

(I) Triangular distribution, with the maximumordinate under the

center of footing, (Terzaghi's assumption) ;

(2) Uniform distribution;

(3) Triangular distribution with the maximumordinates under the

edges of the footing.

The results from the examplecalculations in Appendix A are shownin

Fig. 21. It can be seen that the assumedpressure distribution under the

base has an appreciable effect on the value of the bearing capacity. Further,

it can be seen in Fig. 21 that the angle of rise _ also has an appreciable

effect on the value of the bearing capacity. Further discussion relative

to the abovementioned point is given later in this section.

Analyzing the results as shownin Table 5, it is to be observed that

the ultimate bearing capacity of circular plates varies directly with respect

to the diameter of the plate. This can be seen by comparing the ratios of

the diameters with the ratios of the ultimate bearing capacities, as tabu-

lated in columns i and 3 of Table 5, respectively. This proves the validity

of the set expression, 19 (see Eq. 4), that

_o = constant x B (24)

(25)

At this point in the discussion, a study of the theory as compared to
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experimental testing is given. Results of this investigation as well as

those of other investigators are used in the study.

With regards to this investigation, the angle of internal friction

of the sand, (Art. 4.3), was 38.7 degrees. The value of the bearing

capacity coefficient N¥ from Fig. 6 is 96. Using this value of 96, and

the average soil density of i01 ib/ft s, the theoretical values of the bear-

ing capacity were calculated and tabulated in Table 6.

Tables 7, 8, and 9 show pertinent experimental results of some of

the research done on plates by other investigators. 3'I0'14 Each of these

investigations is discussed briefly to give the background and the procedures

followed by each of the authors.

14
Selig and McKee, Table 7, used uniform Ottawa sand that was kept

air-dry throughout the tests. The density of the sand ranged between 96.3

ib/ft 3 and 112.7 Ib/ft 3, with an assumed average density of 112.3 ib/ft 3 to

14
apply throughout the experimental program. By means of triaxial shear

tests, values of the angle of internal friction ranged from 38 degrees to

41 degrees, The plate experiments were conducted in a box approximately

48 in. square and 36 in. deep, that was built of wood and strapped for

added strength. The footings were machined from aluminum plate and the

bottoms were knurled. Static loads were applied in increments by a hydrau-

lic jack acting through a calibrated loading ring. The sand was vibrated

using a flexible-shaft concrete vibrator.

3
Davis and Woodward, Table 8, ran their tests on cohesionless sand.

The density of the sand was 102 ib/ft s and the angle of internal friction

was approximately 36 degrees. The soil masses on which the tests were made
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EXPERIMENTALVERSUSTHEORETICALRESULTS

(From this study)
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Footing
Shape

Circular

Dimensions

In.

2.22

diameter

3.14

diameter

4.44

diameter

Average

Bearing

Capacity

Load

Ib/ft 2

650

910

Theoretical

Value Using

Terzaghi's

Equation
ib/ft _

538

761

1290 i076

Ratio of

Experimental
Theoretical

1.21

i. 20

i. 20

The experimental values are the mean values as read off the idealized

average load-settlement curves.

Values calculated base on an average angle of internal friction of

38.75 degrees and a mean density of i01 pcf.
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TABLE 7.14

EXPERIMENTAL VERSUS THEORETICAL RESULTS

(From Selig and McKee)
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Footing

Shape

Square

Circular

Rectangular

Dimensions

In.

2x2

3x3

4x4

2.26

diameter

3.39

3x6

3x9

3x12

3x15

3x18

3 x 21

Average

Bearing

Capacity
Load

Ib/in. e

9.3

15.1

19.1

9.3

14.1

15.9

17.5

22.5

22.5

21.7

23.1

Theoretical

Value Using

Terzaghi's

Equations
Ib/in. e

13.5

18

5.3

7.95

11.7

11.7

11.7

11.7

11.7

11.7

Ratio of

Experimental

Theoretical

I

i .03

1.12

i .06

1.75

1.77

1.36

i. 50

i .92

1.92

i .85

2.06

Values calculated by R. A. lliya based on an average angle of

internal friction of 39.5 degrees and a mean density of 112.3 ib/ft _.
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EXPERIMENTALVERSUSTHEORETICALRESULTS

(From Davis and Woodward)

59

Footing
Shape

Rectangular I

Circular

Dimensions

i

In.

i x 24

I xl0

2

diameter

Average

Bearing

Capacity

Load

ib/in. 2

Theoretical

Value Using

Terzaghi's

Equation
ib/in. 2

16.0 14.7

16.0

14.0

18.0

22.0

20.0

14.0

16.0

22.0

14.7

14.7

14.7

14.7

14.7

14.7

Ratio of

Experimental
Theoretical

14.7

17.7

17.7

23 17.7

14.7 1.09

1.09

0.95

1.23

i .49

1.49

0.95

1.09

1.19

1.24

i. 30

Values calculated by R. A. lliya based on an angle of internal

friction of 36 degrees and a density of 102 lb/ft a.

22

21

1.09



TABLE9.i0

EXPERIMENTALVERSUSTHEORETICALRESULTS

(From Meyerhoff)

60

Footing
Shape

Dimensions

In.

Average

Bearing

Capacity

Ib/ft e

Theoretical

Value Using

Terzaghi's

Ratio of

Experimental
Theoretical

Equation
ib/ft 2

388

775

486

486

486

486

972

Square I/2 x i/2 720 1.85

i x i 1200 1.55

Rectangular 1/2 x 1 1/2 700 1.44

1/3 x 3 1080 2.22

1/2 x 4 1/2 1560 3.2

1/2 x 6 1240 2.56

I x 3 1640 1.69

!

Values calculated by R. A. lliya based on an angle of internal

friction of 30.5 degrees, and a density of 106 lb/ft a.
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had horizontal dimensions of from 1-1/2 to 3 ft and the depth was at least

eight times the footing width.

I0
Meyerhoff, Table 9, carried out loading tests in a stiffened steel

tank 18 in. long, 15 in. wide and 18 in. deep, which was filled in 3-in.

thick layers with a clean and dry, medium river sand. The grading lay

between 0.3 and 0.6 mm, with 50 per cent passing a 0.4 mm sieve. Each layer

was tamped with a vibrating ha_mer and a fairly uniform density was obtained.

The angle of internal friction was 30.5 degrees. The footings were made of

brass, and were loaded by a jack through a proving ring. The load was applied

in small steps, each increment being maintained until the settlement was

complete.

As shown in Tables 7, 8, and 9 the ratios of the experimental results

to the theoretical values of the ultimate bearing capacities ranged from

0.95 to 1.85 for square and circular footings. Higher ratios were observed

for rectangular footings.

Judging from their results it may be stated that the above mentioned

3,10,14
investigators agreed closely with the theory of Terzaghi.

Referring to the results of this investigation, it may be concluded

that the equation for the ultimate bearing capacity on the surface of

cohesionless soils as given by Terzaghi 18'26 is in close agreement with

the observed load-settlement tests (refer to Table 6 and Fig. 22). As

indicated, the ratio of the experimental results to the theoretically cal-

culated values is approximately 1.20. This difference of 20 per cent may

have been caused predominantly by the following previously discussed factors:

(I) The shape of the failure surface, and the angle of rise of the
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lower boundary of the central zone beneath the footing.

(2) The pressure distribution at the base of the footing.

(3) The true case of a three-dimensional problem as compared to

the two-dimensional analysis used in developing the theory, and

converted semi-empirically for use on three-dimensional problems.

However, some error may be attributed to the evaluation of the angle

of internal friction, and to possibly experimental procedures.

C. Discussion of Coefficient of Subgrade Reaction.

The theory of subgrade reaction as discussed in Chap. II, Art.

2.4 states that for a loaded area on a given soil the value of the coeffi-

cient of subgrade reaction k s is a constant and is equal to the relation

k s =
y (20)

Referring to the average load-settlement curves for the three plates,

it can be seen that this relationship holds for each of the plates up to

where the value of p equals to about one-half the ultimate bearing capa-

city. At that point the actual curve for the load-settlement test starts

to deviate from the initial tangent modulus.

The results (refer to Table 4) show that the value of the _s was

affected by the size of the contact surface of the loaded area. It was

found that the coefficient of subgrade reaction k s varies inversely with

respect to the diameter of the loaded footing element. This can be seen by

comparing the ratios of _s

of the plates from Table 5.

of elasticity covered below.

from Table 4 with the ratios of the diameters

Moreover, this relation is used in the theory

The effect of the diameter of the plate on the
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coefficient of subgrade reaction is given in Fig. 23.

Values of the coefficient of subgrade reaction for square plates on

sand are given by Terzaghi 21 as shown in Table i. In order to compare values

obtained for circular plates from these experiments with values in Table i,

the theory of elasticity will be employed to obtain a correlation factor

between values of ks for circular and square plates.

From the theory of elasticity, the settlement of a loaded area on

the surface of a semi-infinite solid is given by the expression (refer to

Art. 23)

Y = gn B "1-P2 I (5)
E p

since k s , the coefficient of subgrade reaction is by definition equal to

k, = -_ (26)
Y

then

i
ks = __,,_ (27)

B _ I
E p

The shape factor I as given by Terzaghi and many others
P

12,15,24,27

is

I for a square = 0.56
P

I for a circle = 0.7854
P

therefore, for a circular plate whose diameter is equal to the side of a

square, we could write the following relation:
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I

_ (circle) = ____=° 0.7854
- 0.713. (28)

_s (square) _s i
0.56

Adjusting the values proposed in Table 1 the coefficients of subgrade

reaction are obtained for a circular plate with a l-ft diameter, in tons/ft 3,

as shown below.

TABLE I0.

o

VALUES OF _, IN TONS/FT s
i

Relative Density of Sand Loose Medium Dense

Dry or moist sand, limiting values

Dry or moist sand, proposed value

14-43

28

43-215 215-713

93 i 357

The adjusted values for various size diameters may be obtained from the

following relation as discussed above

o

o _'i x i

_s8 - B (29)

or

o o

k_l = _'s x B (30)

o

where B is the diameter in feet. Using this relation, the _sl , coefficient

of subgrade reaction for a circular plate having a l-ft diameter, should be

equal to:



o o 2.22

los 1 = /_s (2.22) x 1---7
- 65 x 0.185 = 12 tons/ft a

67

if based on the test results of the 2.22-in. diameter plate.

As seen such a value is quite low as compared to the proposed values

by Terzaghi, even for loose sand. The condition of the sand used in the

investigation may be accurately described as of medium density since the

completely loose condition gave a density of 95 ib/ft a and the densest 108

ib/ft a .

Based on the above analysis it may be concluded that the proposed

values of the coefficient of subgrade reaction by Terzaghi tend to predict

much smaller settlements than actually would occur, which may be serious for

structures where the settlement governs the design. This conclusion, of

course, is based on very limited data. However, it should be noted that

Terzaghi failed to site references, either theoretical or experimental,

that would show the derivation of the values proposed in Table I.

In analyzing the results of the settlements which correspond to the

ultimate bearing capacity it is to be noted that the settlement varied

directly with respect to the areas of the plates, or to the square of the

diameter. (Refer to Table 5.)

5.3 Load-Settlement Curves for the Cone

Seven load-settlement tests using the cone were run in the 36-in. x

36-in. x 37-in. box. A load-settlement curve was plotted for each individual

test. From these individual curves an average load-settlement curve was

obtained for use in the analysis and comparison with the plates. A typical

load-settlement curve and the average load-settlement curve are shown in
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Figs. 24 and 25, respectively. The average load-settlement curve was ob-

tained by averaging graphically the results of the eleven tests.

Referring to Fig. 24 it may be observed that the early part of the

load-settlement relationship is irregular in that very small loads were

developed although the settlement was appreciable. This is thought to be

explained by the lack of sensitivity of the loading system to such small

loads. In the analyses it is assumedthat the curve extends smoothly

back to the origin. Even though the irregularity actually exists in the

real response of the system, any discrepancy between experiment and theory

will be very small because of the very small loads in the early portion of

the curve.

From Fig. 24, it can be observed that the load-settlement curve for

the cone is almost a straight line; and the curve does not indicate an

ultimate load condition as characterized by the curve for a plate. This

behavior is, of course, expected from a loaded cone since the cross-sectional

area at the plane of the original soil surface increases with settlement.

The loading was carried on until the cone was deep enough in the sand

so that the cross-sectional area of the cone at the plane of the original

soil surface was equal to the area of the largest plate. Even though failure

of the sand, as observed in the plate tests, possibly did not occur, in re-

ferring to the ability of the cone to carry load, the term "bearing capacity"

is employed. In the case of the cone, the bearing capacity is computedby

dividing the observed load by the cross-sectional area of the cone at the

plane of the original soil surface.

The bearing capacity values with the corresponding settlements were
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read from the average load-settlement curve and are tabulated in Table Ii.

With regard to the theory for the computation of the bearing capacity

of a cone on cohesionless soil, the same basic assumptions previously dis-

cussed in the theory of plates were used. As before, the computations were

made for the two-dimensional case. A numerical example of the computations

is presented in Appendix B. A wedge forming an angle equal to @ is assumed

to develop, as shown in Fig. 37 (see Appendix B). As previously assumed

for plates, this wedge of soil moves downward and outward.

The calculations shown in Appendix B were performed using an angle

equal to 32 degrees, the same as was used for the examples of the strip

footing. As shown, the value of the bearing capacity coefficient N¥ is

equal to 20.8 which is about 0.825 of the value calculated, using the same

procedures, for the strip footing. Such a relation agrees very closely

with the experimental results where a ratio of 0.79 was observed. (Refer

to Tables 12 and 13.)

Using this factor of 0.79, the value of the bearing capacity coeffi-

cient N_ for the cone for sand with an angle of internal friction

equal to 38.7 degrees is 79, which is 0.825 Ny (plate).

In the following pages expressions for the bearing capacity of a cone

are developed.

As seen from Table 12 the bearing capacity of the cone varied directly

with respect to the cross-sectional diameter at the plane of the original

soil surface. This relation was shown to be typical of circular plates

on the surface of cohesionless soil. Therefore, the bearing capacity of

the cone may be expressed in the same basic equation form previously pre-
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sented for plates. Since the ratio of 0.79 was observed between the bear-

ing capacity of the cone and the ultimate bearing capacity of the circular

plate, the expression for the bearing capacity of the cone may be written

as

q = 0.24 yBN? (plate) Ib/ft e of cross-sectional area (31)

where B is the diameter of the cone at the plane of the original soil

surface, and N¥ is the bearing capacity coefficient of a circular plate

as shown in Fig. 6.

Since for a 30 degree half vertex angle, the relation between the

diameter B and the settlement height y is

B = 2y (32)

/f-

the bearing capacity of the cone may be expressed in terms of the settle-

ment y by the following equation

q = 0.28 7yN? (plate) ib/ft _ of cross-sectional area (33)

If the bearing capacity of the cone is to be expressed in terms of

the surface contact area, and since the ratio between this bearing capacity

and the ultimate bearing capacity of the plate is 0.28 (refer to Table 13),

the bearing capacity of the cone in terms of the surface area is given by

q = 0.084 y_Ny (plate) ib/ft 2 of surface contact area (34)

where Bp is the diameter of the equivalent circular plate which has the
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same surface area as the surface contact area of the cone.

Since the relation between the diameters of the cone and the equiva-

lent circular plate is equal to

76

Bp = 1.414 B= (35)

then, Eq. 34 may be rewritten in the form

q = 0.12 yBcNy (plate) Ib/ft 2 of surface contact area (36)

where Bc is the diameter of the cone at the plane of the original soil

surface. Equations 31 and 36 show that the bearing capacity of the cone as

expressed in terms of the cross-sectional area is twice that expressed in

terms of the surface contact area.

The bearing capacity of the cone may also be expressed using the basic

equation for circular plates and the theoretically developed value of Ny

(see Appendix B). Therefore, the bearing capacity of the cone may be given

by

q = 0.3yBNy (cone) ib/ft 2 of cross-sectional area (37)

or expressing it in terms of the settlement y

q = 0.345 yyNy (cone) Ib/ft m of cross-sectional area (38)

If y equals i01 ib/ft 3 and Ny equals 79, the theoretical load-

settlement curve for the cone may be plotted as shown in Fig. 26. The

difference between the theoretical and experimental curves is reflected

by the factors, 0.825 and 0.79 previously discussed on page 69. The close-

ness of these two curves is thought to represent an acceptable accuracy.
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5.4 Load-Settlement Curves for the Spheres

Two spherical foundation elements were tested, with spherical diameters

of 3.14 in. and 5 in. The tests were run in the same typical procedure, out-

lined in Art. 4.4, used on the plates and cone.

A load-settlement curve was plotted for each test, and from these

curves an average load-settlement curve was obtained for each of the two

spheres. (Refer to Figs. 27 through 30.) The average load-settlement

curves were obtained by averaging graphically the results of the individual

tests. Eight tests were performed using the 3.14-in. diameter sphere, and

5 tests using the 5-in. diameter sphere.

From Figs. 27 and 29 it may be observed that the early part of the

load-settlement relationship is irregular in that very small loads were

developed although the settlement was appreciable. This is thought to be

explained by the lack of sensitivity of the loading system to such small

loads. In the analyses it is ass_ed that the curve extends smoothly back

to the origin. Even though the irregularity actually exists in the real

response of the system, any discrepancy between experiment and theory will

be very small because of the very small loads in the early portion of the

curve.

The load-settlement curves for the spheres were quite similar to

those observed for the cone. The curves did not show the ultimate load

characteristic as did the plates; this was expected since the cross-sectional

area of the sphere increased with settlement.

Similar to the cones, the loading was carried on until the spheres

were deep enough in the sand to furnish cross-sectional areas at the plane
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of the original soil surface equal to those of the plates. The term "bear-

ing capacity" is employed in referring to the ability of the sphere to carry

load. It is computed similarly as was the bearing capacity for the cone.

Significant results from the average load-settlement curve are shown

in Tables 14 and 15. Analyses of the results are in Tables 16 through

18.

As seen from Tables 16 and 17, the spheres behaved similarly to the

cone and plates in that the bearing capacity varied directly with the cross-

sectional di_neter at the plane of the original soil surface. This relation

was true on both the 3.14-in. diameter sphere and the 5-in. diameter sphere.

One may probably conclude that the bearing capacity of all foundation elements

having circular projected areas varies directly with the diameter of the

projected area.

A study of the results of both spheres, (refer to Table 18) revealed

that the bearing capacity was not affected by the spherical diameter for the

same projected cross section. Of course, to have equal cross-sectional

areas with two different spherical diameters, more embedment was required

for the smaller sphere. Thus, for the same bearing capaci£y the settlement

of the 3.14-in. diameter sphere was larger than that of the 5-in. diameter

sphere.

With regard to the theory for the computation of the bearing capacity

of a sphere on cohesionless soil, the same basic assumption previously

discussed in the theory of plates were used. As before, the computations

were made for the two-dimensional case. A numerical example of the compu-

tations is presented in Appendix C. A soil wedge is assumed to adhere to
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TABLE 18.

SIGNIFICANT COMPARATIVE RESULTS FOR THE TWO SPHERES

88

The 3.14-In. Diameter Sphere

Settlement

In.

Cross-

Sectional

In.

Cross-

Sectional

Areas

In. e

Bearing

Capacity

ib/ft e

0.42 2.137 3.59 353

5.482.640.72 425

The 5-1n. Diameter Sphere

Settlement

In.

Cross-

Sectional

In.

Cross-

Sectional

Areas

In. e

0.24 2.137 3.59

2.640.38 2.48

Bearing

Capacity

ib/ft 2

340
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the sphere, forming an angle equal to @ with the tangent drawn to the

sphere at the soil level. (Refer to Fig. 38). As previously assumed for

strip footings and cones, the wedge is in elastic equilibrium and moves with

the sphere into the soil.

The calculations shown in Appendix C were performed using an angle

of 32 degrees. The value of the bearing coefficient N? calculated is equal

to 15 which is about 0.6 of the value calculated for the strip footing.

Such a relation agrees very closely with the experimental results

(refer to Table 19) where a ratio of 0.55 was observed. Using this factor

of 0.55, the value of the bearing coefficient N¥ for the sphere for sand

with an angle of internal friction @ equal to 38.7 degrees is 53 which

is 0.55 x N¥ (plate).

In the following pages expressions for the bearing capacity of a

sphere are developed.

As stated above the bearing capacity of the sphere was observed to vary

with respect to the cross-sectional diameter at the plane of the original

soil surface. Therefore, the bearing capacity of the sphere, as that of

the cone, may be expressed in the same basic equation form previously pre-

sented for plates. From Table 19 it is seen that the bearing capacity of

the sphere is 0.55 of the ultimate bearing capacity of a circular plate

having its diameter equal to that of the sphere at the plane of the original

soil surface. Therefore, the bearing capacity of a sphere may be expressed

as

q = 0.16yBN¥ (plate) Ib/ft 2 of cross-sectional area (39)
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is the diameter of the sphere at the plane of the original soil

Using the following geometric relation for a sphere

B = 2 v/'" y(D-y) (40)

where D is the spherical diameter and y is the settlement the bearing

capacity may then be expressed in terms of the settlement y as

q = 0.33y Vr y(D-y) N_ (plate) ib/ft _ of cross-sectional

area. (41)

The bearing capacity of the sphere may also be expressed using the

basic equation for circular plates and the theoretically developed value

of N¥. (See Appendix C). Thus, the bearing capacity of the sphere is

given by

q = 0.3yBN¥ (sphere) ib/ft 2 of cross-sectional area (42)

where B is the cross-sectional diameter of the sphere at the plane of

the original soil surface.

Equation 42 may be expressed in terms of the settlement as

q = 0.67 / y(D_y) N¥ (sphere) Ib/ft e of cross-sectional

area (43)

If 7 equals i01 ib/ft 3 and N_ equals 53, the theoretical load-

settle curve for the sphere may be plotted as shown in Fig. 31. The

difference between the theoretical and experimental curves is reflected by

the factors 0.6 and 0.55 previously discussed on page 87. The closeness

of the two curves is thought to represent an acceptable accuracy.
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Comparing the bearing capacities of the cone and sphere it was observed

that the ratio between the two bearing capacities was

q (cone) = 0.24 = 1.5 (44)
q (sphere) 0.16

r ......

I

for the same equal cross-sectional areas at the plane of the soil surface.

The difference in the behavior of the cone and the sphere, as expressed

by the factor 1.5, may be explained by considering the difference in the

geometry of the two elements. To obtain the same cross-sectional area at

the plane of the original soil surface, much more settlement is required

for the cone. Consequently the surface area for the cone is larger than

that of the sphere, leading to more bearing capacity for the cone.

5.5 Sua_nary of Experimental Results for the Foundation Elements Tested

The average load-settlement curves obtained from the experimentally

observed data for all the foundation elements tested are plotted in Fig. 32.

Though a thorough discussion was given, in separate articles of this

chapter, about each of the foundation elements, it is thought helpful to

summarize the results.

Referring to Fig. 32, it may be seen that the load-settlement curves

of the cone and sphere did not show the ultimate load capacity values as

were observed for the circular plates. This, of course, was expected from

both the cone and sphere since their cross-sectional areas at the plane of

the original soil surface increased with increase in settlement.

Were it possible to increase the load without increasing the cross-

sectional area at the plane of the original soil surface, probably the
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BEARING CAPACITY (Ib/ft z)

500 I000

.,a

444 ,n PLATE

CONE (60 ° VERTEX ANGLE)

FIG. 32 LOAD-SETTLEMENT CURVES FOR

PLATES, CONE, AND SPHERES
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load-settlement curves would have shown ultimate load conditions similar to

those of the circular plates. However, since the theoretical calculations,

Appendices B and C, which were based on ultimate failure conditions, agreed

closely with the experimentallyobserved results, the bearing capacity

values previously discussed may well be considered as those at the ultimate

load. Moreover, this point is only of academic interest since in this

investigation the primary interest was the load-settlement relationships.
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CHAPTER SIX

LOAD-SETTLEMENT RELATIONS OF FOUNDATION ELEMENTS

IN NON-DIMENSIONAL FORM

6.1 introduction I, 4, 7, ii

Dimensional analysis is a method by means of which we may deduce infor-

mation about a phenomenon described by a dimensional equation, all terms of

which have the sane measure formula.

Dimensional analysis is a useful and convenient technique for finding

the quantitative conditions for similarity of behavior.

The use of dimensional analysis in connection with scale models has

proved to be of great importance. Information gained from experiments

using models proved very useful when the mathematical theory was found to

be too difficult. The theory of models founded on the method of dimensions

is indispensable to the modern engineer in planning his experiments.

7
6.2 Dimensional Analysis in Soil Mechanics

A. Physical Similitude

The following well known considerations of similitude in science

form the basis for the discussion with respect to particular phases of soil

mechanics that are related to the investigation.

Considering a model test that is assumed to be a true picture, at

reduced scale, of a prototype phenomenon, the requirements are:

(I) Geometric similarity: If two, arbitrary, lengths in the

model are designated by L_ and L_ and the corresponding

96



lengths in the prototype by L_p

similarity is expressed by

L_p I_

and L_p

97

the geometric

(45)

This fraction gives the linear scale ratio. It means that the ratio

of two arbitrary lengths in the model is equal to the same ratio in the

prototype, or corresponding ratios LI/L m are equal in model and prototype.

For static phenomenon, only the geometric similarity is of immediate

interest, whereas in dynamic problems, the kinematic similarity is also

required.

(2) Kinematic similarity: Designating the velocities by V,

the kinematic similarity would then be expressed (using

the same approach as for the geometric similarity) as:

= V_, (46)
V _p V_p "

Though these two expressions form our primary interest for similitude,

the physical conditions must be added since it is far from certain that the

model would be physically stable, a condition quite sure for the prototype.

These physical conditions could be expressed as conditions of equilibrium

of the individual particles which are quite evident for the static case.

For a dynamic problem inertia forces (mass x negative acceleration) are

applied to all particles.

(3) Dynamic Similarity: In the prototype all particles are in

equilibrium at any time. Therefore, the system of forces

in the model must be a true picture of those in the prototype
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so as to fulfill the sameconditions. Designating forces by

F, the dynamic similarity is expressed by

= F_ . (47)

F_p F_p

B. Dimensional Analysis Applied to Settlements on Sand

In the development of the basic equation for load-settlement rela-

tionships in non-dimensional form a circular foundation element is considered.

If the settlement is y due to the load p the foundation element carries

per unit of area, then geometric similarity requires that

Y- = _.Z___
Ba _ (48)

where B is the diameter of the foundation element.

The most important forces in a problem of settlement on sand are the

external load p per unit of area and the unit weight y of the sand which

constitutes the gravitational forces.

If the gravitational stresses in the sand are represented by y B ,

then the dynamic similarity requires that

(49)

For proper presentation of the loading test in a dimensionally correct

form, Eqs. 48 and 49 may be combined in the form of

_.Y_=
B
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where fl is a dimensionless factor.

If the dimensionless parameter fl can be determined in some manner,

Eq. 50 can be used to predict the behavior of foundation of various sizes

on the surface of different types of sand.

6.3 Non-Dimensional Relations for the plates I Cgne_ and Spheres

The non-dimensional approach expressed in Eq. 50 was used in plotting

Fig. 33 from the general plot shown in Fig. 32. In using Eq. 50 the value

of the sand density y of I01 ib/ft a was employed to compute the gravita-

tional stresses yB.

It may be noted that in plotting Fig. 33 the average curves were

used. For the plates and spheres, there was some negligible scatter, which

did not show on the scale of the general plot.

Figure 33 shows in non-dimensional form the load-settlement relation-

ships for circular plates, a 60 degree cone, and spheres. It is of signi-

ficant importance to note that only one curve represents the load-settlement

relationships for each of the three types of foundation elements. There-

fore, the information contained in Fig. 33 predicts the behavior of any

size circular plate, any 60 degree cone, and any size sphere loaded on the

surface of a cohesionless sand of the same physical properties as the sand

used in this investigation.

Since in general, sands of the exact type used in this investigation

will not be encountered, it is important to have procedures for predicting

behavior for any sand. The following paragraphs show the developed proce-

dure.

The bearing capacity of the spheres and cone may be expressed as
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then the relation

(51)

i01

<-_B.) = EConstant_ N# (52)

Therefore, as seen from Eq. 52, the non-dimensional relations for any
t

sphere or 60 degree cone is directly proportional to the value of Ny which

is a function of the angle of internal friction of the sand, (Refer to Fig.

6.) So in using Fig. 33 for various types of sands the values from the curves

must be multiplied by the ratio of 96, which is the N# for the soil used

in this investigation, to the value of Ny for the new soil as determined

from Fig. 6.

For the 60 degree cone the curVe will always be a straight line for

one value of y/B regardless of the type of sand. As an example, for sand

with an angle of internal friction _ equal to 32 degrees, the relation

q/yB for any 60 degree cone equals the values from Fig. 33 multiplied by

96/28, where 28 is the Ny of the type of sand. (See Fig. 6.)

Similarly the curve for spheres will always be one vertical line for

one type of sand since the relation q/yB is a constant. However, for

various types of sand the curve is shifted in proportion to the ratio of

Ny's as explained above.

Analyzing Eq. 50 with respect to the curve for plates, it may be

observed that the dimensionless parameter fl is a constant and is equal

to the slope of the early part of the curve. This relation holds true up

to about 1/2 the ultimate value of _/TB at which stage the curve deviates
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I

from this tangent. It is of significance to note that this constant fl

may be used to compute relations for plates up to 1/2 the ultimate and also

to locate the point of intersection between the initial tangent to the curve

and the vertical line indicating the ultimate condition. As previously dis-

cussed this is possible for any size plate. Equation 52 may be used to ob-

tain the values of the ultimate condition since Eq. 51 represents the ulti-

mate bearing capacity for circular plates. Therefore, for any type of sand,

the value of the q/yB at the ultimate must be corrected by multiplying it

by the ratio of the N¥'s as shown for the other two elements.
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CHAPTERSEVEN

CONCLUSIONS

From the results of this investigation the following observations may

be made:

I. The ultimate bearing capacity for circular plates placed on the

surface of cohesionless soils varies directly with respect to the

diameter of the plate.

2. The bearing capacity of the cone on cohesionless soil, as expressed

in terms of the cross-sectional area, varies directly with respect

to the cross-sectional diameter at the level of the embedmentor

settlement. It may be concluded that the ultimate bearing capacity

of the cone placed on cohesionless soils behaves similarly to cir-

cular foundation elements.

3. The bearing capacity of the sphere on cohesionless soil as expressed

in terms of the cross-sectional area varies directly with respect

to the cross-sectional diameter at the level of the embedmentor

settlement.

4. The bearing capacities of any two spheres on cohesionless soil

are equal, regardless of size of spherical diameter, at equivalent

cross-sectional areas.

5. The ultimate bearing capacity of a cone, whosehalf vertex angle

is 30 degrees, on cohesionless soil is expressed by

q = 0.24_ BNV (plate) ib/ft e of cross-sectional area
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where B

of the embedment, and Ny

circular plates

or

is the cross-sectional diameter of the cone at the level

the bearing capacity coefficient for

q = 0.28y y Ny (plate) Ib/ft 2 of cross-sectional area

where y is the embedment or settlement

or

_u = 0.12y B Ny (plate) ib/ft 2 of surface contact area

where B is the diameter of the cone at the level of the settle-

ment that furnishes the surface contact area.

Based on the theory developed in this investigation, the bearing

capacity of the cone, whose half vertex angle is 30 degrees, on

cohesionless soil may be expressed as

q = 0.30y B Ny (cone) ib/ft 2

or

q = 0.345y y Ny (cone) Ib/ft 2.

The bearing capacity of a sphere on cohesionless soil is expressed

by

q = 0.165y B Ny (plate) ib/ft 2

where B is the cross-sectional diameter at the level of the

embedment, and Ny the bearing capacity coefficient for circular

plates, or
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q = 0.33y v/y (D-y) Ny (plate) ib/ft 2

where D is the spherical diameter of the sphere, and y is the

settlement or embedment.

Based on the theory developed in this investigation the bearing

capacity of a sphere on cohesionless soil may be expressed as

q = 0.3y B Ny (sphere) ib/ft 2

or

q = 0.6 y v/ y (D-y) Ny (sphere) Ib/ft _.

The non-dimensional relationship for load-settlement curves

may be expressed as

where fl is dimensionless parameter.

I0. For a specific type of sand there is only one non-dimensional curve

for any size circular plate, any size sphere, or 60 degree cone.

ii. The equation of Terzaghi for ultimate bearing capacity of circular

plates placed on the surface of cohesionless soils is quite accu-

rate as shown by the observed test results.

12. The settlement at the ultimate bearing capacity for circular

plates placed on the surface of cohesionless soils varies directly

with respect to the area of the plate or the square of the diameter

of the plate.
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13. The load-settlement relationship for a cone with a 30 degree half

vertex angle tested on the surface of a cohesionless soil is a

straight line.

14. The coefficient of subgrade reaction _s is a constant for any

one circular plate on any one cohesionless soil only for the

values of the subgrade reaction p that do not exceed one-half

the value of the ultimate bearing capacity for that plate.

15. The value of the coefficient of subgrade reaction _s varies

inversely with respect to the diameter of the plate loaded as

a footing element.

16. The bearing capacities for two equivalent cross sections of

the cone and sphere have the ratio of 1.5, which indicates the

effect of the surface contact area.

17. The thickness of the sand layer must be at least eight times

the diameter of the circular foundation element so as not to

have any effects from the lower layer on the ultimate bearing

capacity, the settlement at the ultimate bearing capacity, and the

modulus of subgrade reaction.

18. If the settlement at the ultimate bearing capacity does not

govern the design' the ultimate bearing capacity attained by

condition 17 may be developed with a sand layer that is twice

the diameter of the foundation element in thickness, and under-

lain by a solid strata such as rock. The error introduced is about

+8.5 per cent.

19. Maximumultimate bearing capacity and minimumsettlement at

the ultimate bearing capacity were observed when the thickness



o

i07

of the sand layer was four times the diameter of the foundation

element and underlain by a solid strata.
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APPENDIX A

Steps Used in the Calculations of the Bearing Capacity Coefficient N7 for

a Strip Footing•

(Refer to freebody diagram, Fig. 34)

Typical steps to be carried out for all the failure surfaces assumed

for trial:

i. Subdivide the soil mass (hatched boundaries) into a convenient

number of elements and compute the total area and the total moment

of this area, thus determining the center of gravity.

2. Compute the moment arm d_, distance of total mass weight (total

area) from the center of the assumed log spiral surface.

3. Compute the moment arm _z' of the passive pressure Pl which is

assumed to act at 2/3 the height h from the center of the assumed

log spiral surface.

4. Compute Pl from the relation

pl = 1/2 he y [tan 2 (45+ _/2)] ffii/2 h2_ [_PR]

where h is in terms of r.

5. Compute the total weight W keeping it in terms of 7 and r ,

thus it is equal to _ re y ]where A is the total area in

terms of the scale chosen for r .

6. Enter all previously calculated values in a tabular form, as shown,

and compute the resisting moment of the soil against failure.

M = W d_ + PI _I

ii0



°,

t

o

.

iii

(note that both W and PI, are in terms of (r2y) and that d_

and _I in terms of r . Therefore, the moment is in terms of

ray .

The moment of the load causing failure is

where _p is the distance of Pp from the center of the log spiral

surface• (Note that it depends on the pressure distribution at the

base of the footing.)

Thus, compute _p in terms of r

Compute Pp from the equilibrium equation

W d. + Pl do. = C y rs.
Pp= "

The value of the constant is Ny.

Repeat Steps I through 9 for the various assumed failure surfaces,

and plot the results of the values of N_. The minimum value would

be the controlling value to be used in determining the load Pp.
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CALCULATIONS OF THE BEARING CAPACITY COEFFICIENT N7 FOR A

PLATE FOR _ =

Surface - i - (Refer to Fig. 35)

Mean Ordinate Width Area Arm

i0 I0 I00 5

II. 6 I0 116 15

9.6 5 48 22.5

Moment

500

1740

1080

264

-31

3320

-103.33*

233 3216.67

CoG,

3216.67

233
= 13.81

d_ = 13.81

-3.50

I0.31 = I0.31 r

2
d_ I 3 hl

2
x 8.4 = 5.6

3

+3.6

9.2 = 0.92 r

* I

Area of triangular wedge = -_- x I0 x 6.2 = 31

* I0
Moment of triangular wedge = 31 x ---7 = 103.33
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N'y.= 76

Ny= 41

Ny= 25

I
I

j

90

80

70

60

5O

40

30

20

I0

0

= 32 °

FIG. 35 FAILURE SURFACES FOR A STRIP FOOTING

FOR A RISE ANGLE ,/, EQUAL TO ÷
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Surface - 2

Mean Ordinate Width Area

11.7 i0 117

15 i0 150

13.2 I0 132

399

-31

Arln

5

15

25

Mornen t

585

2250

3300

6135

-103.33

368 6031.67

CoG.

6031.67

368
= 16.39

16.39

-5.50

10.89 = 1.089 r

2 2

3 h2 = T x 10.8 = 7.2

+2.5

9.7 = 0.97 r
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Surface - 3

Mean Ordinate

13.4

18

17.7

15

Width

I0

I0

i0

5

Are_____.a

134

180

177

75

566

-31

535

Arm

5

15

25

32.5

Moment

670

2700

4425

2437.5

10232.5

-103.33

10129.17

C.G.
10,129.17

535
= 18.93

II. 80 1.18 r

%
2

3
x h3

2
m

3
x 13.8 = 9.2

+i. 5

10.7 = 1.07 r



Mean Ordinate

15.2

20.5

21.3

19

Width

I0

I0

i0

i0

Surface - 4

Area

152

205

213

190

760

-31

729

Arm

5

5

25

35

Moment

760

3075

5325

6650

15810

-103.33

15706.67

117

C,G.

15706.67

729
= 21.55

d_

d9 I

= 21.55

-8.55

13.00

2

3

= 1.3r

2

h4 = -_- x 16.5 = II

+0.7

11.7 = 1.17 r
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Mean Ordinate

17.3

23.5

25

23.5

20.6

Width

I0

i0

I0

i0

5

Surface

Area

173

235

250

235

103

- 5

Arm

5

15

25

35

42.5

Moment

865

3525

6250

8225

4377.5

996

-31

23242.5

-103.33

965 23139.17

C.G.

23139.17

965
= 23.98

23.98

-9.50

14.48 1.448 r

2

3 x h 5
2

m

3
x 19.2 = 12.8

+0.0

12.8 = 1.28 r



Mean Ordinate

19.3

26

28.3

27.7

24.7

C,G. _--"

Width

i0

I0

I0

I0

i0

32646.67

1229

Surface - 6

Area

193

260

283

277

247

1260

-31

1229

= 26.56

Arm

5

15

25

35

45

119

Moment

965

3900

7075

9695

11115

32750

-103.33

32646.67

%

= 26.56

- I0.56

16.00 = 1.6 r

2 2
=-_-- h 6 = -_- x 21.9 = 14.6

-0.6

14.0 = 1.4 r
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Surface

Value of Ny Based on

I0

I

t

ffi0.017

5.50 - 3.33

i0
= 0.217

7.13 - 3.33

i0
= 0.380

8.55 - 3.33

I0
= O. 522

9.50 - 3.33

I0
= 0.617

10.56 - 3.33

i0
= 0.723

• N¥ (rain) = 25.3

Distribution

M

3.46

5.84

9.62

14.65

21.58

30.58

121

M/app

203

26.8

28

35

42.2



Surface

Value of Ny Based on

I

I

Distribution

M

122

2 5.50 - 5.00

I0
= 0.05 5.84 117

3 7.13 - 5.00

I0
= 0.213 9.62 45

4 8.55 - 5.00

I0
= O. 355 14.65

m

9.50 - 5.00

I0
= 0.450 21.58 48

6
i0.56 - 5.00

i0
= 0. 556 30.58 55

.. Ny (rain)= 41.3



Surface

Value of Ny Based on

p

i

I i/
7.13 - 6.67

I0
= 0.046

Distribution

M

9.62

123

Mld_p

210

8.55 - 6.67

i0 = 0.188 14.65

9.50 - 6.67

i0
= O. 283 21.58 76

I0.56 - 6.67
6 I0 = 0.389 30.58 78.5



Calculations of the Bearing Capacity Coefficient

Plate for _ = 45 + _/2

Surface i (Refer to Fig. 36)

Ny for a

124

Mean Ordinate Width Area Arm

12.7 I0 127 5

14.5 i0 145 15

12.2 5 61 22.5

333

-22.5

310.5

Moment

635

2175

1372.5

4182.5
.

-37.5

4145.0

C.G.

4145

310.5
= 13.35

= 13.35

-3:00

10.35 = 2.07 r

2 2

d_ i 3 hl 3 x ii = 7.33

+ 1.00

8.33 1.67 r

Moment of Triangular Wedge = 22.5 x 5/3 = 37.5

Area of Triangular Wedge = 1/2 x 5 x 9 = 22.5
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N?" = 109

D

170

160

150

140

150

120

I10

I00

9O

80

70

60

4 5°'-_/2 = 29 °

FIG. :56 FAILURE SURFACES FOR A STRIP FOOTING

FOR A RISE ANGLE _ EQUAL TO 45°+_'-_ --
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Surface 2

Mean Ordinate Width Area Arm Moment

14.5

17.7

16

I0

I0

I0

145

177

160

482

- 22.5

459.5

5

15

25

725

2655

4000

7380

- 37.5

7342.5

Co G. --

7342.5

459.5
= 15.98

i0.80 = 2.16 r

%
2 2

- 3 h2 = 3 x 13.8 = 9.2

0.0

9.2 = 1.84 r



°

Mean Ordinate

16.2

20.7

20.3

18

Width

I0

I0

i0

5

Surface 3

Area

162

207

203

90

662

- 22.5

639.5

Aim

5

15

25

32.5

Moment

810

3105

5075

2925

11915

- 37.5

11877.5

127

CtG°

dW

11877.5

639.5

18.57

- 6.80

11.77

= 18.57

= 2.35 r

%
2 2

3 ha =-_- x 16.5 =
II

-I.0

i0.0 = 2.0r



Surface 4
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Mean Ordinate Width Are____a

18.2 i0 182

23.5 i0 235

24.2 I0 242

21.7 i0 217

876

- 22.5

853.5

Arm

5

15

25

35

Moment

910

3525

6050

7595

18080

- 37.5

18042.5

CoG,
18042.5 = 21.14

853.5

d, = 21.14

- 8.30

12.84 = 2.57 r

2 h4 = 2-_- -_- x 19.5 =
13

- 1.8

11.2 = 2.24 r
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t

Surface

I

4

Value of Ny based on

d_p

3.00 - 1.67

I

I

ffi0. 265

= 0. 702

= 1.026

= I. 326

Distribution

M

38.80

62.4

95.50

143.5

130

147

88

92.5

108.5

N¥ (rain) ffi 88



Surface

4

Value of N? Based on

I

!

I

= 0.I

= 0.536

= 0.86

: 1.16

N¥(min) = Ii0

true from curve = 109

Distribution

M

38.8

62.4

95.5

143.5

131

Mld_p

388

116.5

ii0.

124



Surface

Values of Ny

i

Based on __ "_ ",__

P

Distribution

M

132

1

2

3

4

5.18 - 3.33

6.80 - 3.33

8.30- 3.33

= 0.37

= 0. 695

= 0.995

62.4

95.5

143.5

169

137

144

Ny (rain) = 137
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Appendix B

The calculations of the bearing capacity coefficient N¥ for a wedge-

shaped foundation element are shown in this appendix (refer to Fig. 37).

The proposed failure surfaces, and the procedure followed in the calcula-

tions, are based on the theory of Terzaghi previously covered. The steps

are the same as those outlined in Appendix A.

134
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Calculations for the Bearing Capacity Coefficient Ny for a Cone

Surface 2 - (Refer to Fig. 37)

Mean Ordinate Width Are_____a Arm Moment

21.3 I0 213 5 1065

21.7 i0 217 15 3255

19.2 i0 192 25 4800

622 9120

9120
- 14.66

C.G. = 622

d_ _"
14.66

+ 4.00

18.66 = 1.866 r

2

-T- h2 =
2

x 16.5 -- Ii.00
3

+ 1.50

12.50 = 1.25 r
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CONE-30 °=HALF VERTEX

\

50

40

3O

20

N7 = 20.8

I0

I

CONE 450--@/2

4
5

///_\\\

2

3

4

FIG. 37 PROPOSED FAILURE SURFACES FOR A CONE
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Mean Ordinate

. 22.3

24.5

23.5

20.7

Width

i0

I0

I0

5

Surface 3

Area

223

245

235

103.5

806.5

Arm

5

15

25

32.5

Moment

1115

3675

5875

3363.75

14028.75

C.G°
14028.75

806.5
= 17.38

15.88 = I. 588 r

dp 1

2 2
3 ha 3 x 19.5

11.8 = 1.18 r
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Surface 4

Mean Ordinate Width Area Arm Moment

23.8

27.4

27.5

24.7

i0

I0

i0

i0

238

274

275

247

1034

5

15

25

35

1190

4110

6875

8645

20820

C°G°

20820

1034
= 20.14

= 20.14

- 5.00

15.14 = 1.514 r

2 2
x h4 = _ x 22 = 14.67

- 3.00

ii.67 = 1.167 r



Surface 5
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Mean Ordinate

25

29.8

30.8

29.2

26.2

Width

i0

I0

i0

I0

5

Area

250

298

308

292

131

1279

Arm

5

15

25

35

42.5

Moment

1250

4470

7700

10220

5567.5

29207.5

CeG.

29207.5

1279
= 22.85

= 22.84

- 7.00

15.84 = I.584 r

%
2 2

=-_- x h5 =--_--
x 24.9 = 16.6

-3.5

13.1 = 1.31 r
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Appendix C

The calculations of the bearing capacity coefficient N¥ for a strip

foundation element with a spherical base are shownin this appendix. (Refer

to Fig. 38.) The proposed failure surfaces and the procedure followed in

the calculations are based on the theory of Terzaghi previously covered.

The steps are the sameas those outlined in Appendix A.

{

{
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N7. rain. = 15

/TANG E NT

SPHERE

30

20

I0

SPHERE

/

/

50-@/2=29 °

I

2

3

4

0

FIG. 38 PROPOSED FAILURE SURFACES FOR A SPHERE
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Calculations of the Bearing Capacity Coefficient N¥ for a Sphere

Surface I - (Refer to Fig. 38)

_Mean Ordinate Width Area Arm Moment

14.2 3.5 49.70 1.75 86.98

15.1 I0 151.00 8.5 1283.50

13.4 I0 134.00 18.5 2479.00

334.70 3849.48

-23.63* -27.58

311.07 3821.90

3821.90
C.G. = = 12.28

311.07

dw = 12.28

+ 3.00

15.28 = 1.528 r

2 2

= -_-- h I = -_- x ii = 7.33

+3.20

10.53 = 1.053 r

Area of triangular wedge = 1/2 x 13.5 x 3.5 = 23.63

* 3.5

Moment of triangular wedge = 23.63 x _ = 27.58
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Surface 2

Mean Ordinate

14.8

17.6

17.6

15.2

Width

3.5

i0

I0

5

Area

51.8

176.0

176.0

76.0

Arm

1.75

8.5

18.5

26

Moment

90.65

1496.00

3256.00

1976.00

479.80

- 23.63

456.17

6818.65

27.58

6791.07

Co G. I

6791.07

456.17
- 14.89

d W

12.89 1.289 r

2

3

2
h2 - 3

x 13.8 9.2

+0.7

9.9 0.99 r
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I

Surface 3

15.4

19.7

21

19

Width

3.5

i0

I0

i0

Ar ea

53.9

197

210

190

650.90

-23.63

627.27

Arm

1.75

8.5

18.5

28.5

Moment

94.33

1674.5

3885.0

5415.0

11068.83

- 27.58

11041.25

C°G.
11041.25

627.27
= 17.60

d W = 17.60

- 5.00

12.60 1.26 r

2
h 3 = 16.5 II.0

0.7

i0.3 = 1.03 r
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Surface 4
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!
J
[

Mean Ordinate

16.

21.5

24.2

23.5

2O. 6

Width

3.5

i0

i0

i0

5

Area

56

215

242

235

103

827.37

Arm

1.75

8.5

18.5

28.5

36

Moment

98

1827.5

4477.0

6697.5

3708.0

16808.0

- 27.58

16780.42

C- G.

16780.42

827.37
= 20.28

d_ = 20.28

- 7.00

13.28 = 1.328 r

D

2 2
3 h4 = 3 x 19.5 = 13.0

-2.0

II.0 = I. i r
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